Mark Scheme (Results) January 2012

GCE Chemistry (6CH04) Paper 01
General Principles of Chemistry I Rates Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our qualifications website at www.edexcel.com.

For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Subject Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk.

You can also telephone 08445760037 to speak to a member of our subject advisor team.
(If you are calling from outside the UK please dial + 441204770696 and state that you would like to speak to the Science subject specialist).

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UA030266

All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (b)}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	A		1

Question Number	Correct Answer	Reject	Mark
4(a)	C		1

Question Number	Correct Answer	Reject	Mark
4(b)	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (a)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (b)	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$ (a)	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$ (b)	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	C		1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a)}$	Orange/yellow and precipitate/ppt or solid or crystals	Any other colour alone or in combination, e.g.red	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i)}$	Both $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ And $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$	COH unless shown correctly in a displayed or skeletal formula	$\mathbf{1}$
	ACCEPT displayed or skeletal formulae if structural formulae not given		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i)}$	Recrystallization	Just crystallization IGNORE solvent	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i i)}$	Measure melting temperature / point (1)	Just boiling temperature	2
	Compare with literature/database / known value Second mark can only be awarded if first mark scored	(1)	

Question	Acceptable Answers	Reject	Mark
18(a)	Hazard - methanol/alcohol is flammable IGNORE flammability of vegetable/diesel oils Precaution - use electrical heating source/water bath /avoid naked flames OR Hazard - methanol/alcohol is toxic Precaution - Use in well-ventilated area/fume cupboard/store away from children/wear gloves OR Hazard - NaOH/reaction mixture is corrosive /burns (the skin)/damages the eyes IGNORE references to (strong) alkali(ne) Precaution - wear gloves/goggles ALLOW any 2 hazards but the precaution must be associated with the appropriate hazard If the Hazard is not clearly identified but the precaution is appropriate then allow one mark, e.g. "Use of flammable substances so avoid naked flames" = (1) mark	Just volatile Just dangerous /harmful Just irritant	4

Question Number	Acceptable Answers	Reject	Mark
18(b)	Any two from: Reuses/reduces waste (vegetable) oil/ lessens need to dispose of (vegetable) oil Could lessen use of (non-renewable/nonsustainable) crude oil/fossil fuels OR vegetable oil/biodiesel/reactants renewable/ sustainable Plants grown for vegetable oil could offset some CO_{2} emissions	Just methanol is renewable Just carbon neutral/just reduces carbon footprint	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (\mathbf { i })}$	Sodium/potassium dichromate((VI))/potassium manganate $((\mathrm{VII})) / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{KMnO}_{4}$	Just $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ $/ \mathrm{MnO}_{4}^{-}$	$\mathbf{1}$
	IGNORE references to acid		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (i i)}$	(Heat under) reflux (1) Use excess/sufficient oxidizing agent/reagent named in (a)(i), even if incorrect IGNORE references to (excess) acid Stand alone marks (1) $\mathbf{2}$ \mathbf{l}		

Question Number	Acceptable Answers	Reject	Mark
19(a)(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ ACCEPT displayed or skeletal formulae $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4}^{+}$ OR $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl} \tag{2} \end{equation*}$ If equation is incorrect then presence of H^{+}or acid in equation/or above arrow and water on LHS scores (1) Mark cq on formula of nitrile ALLOW one mark for the following equation without H^{+}. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3}$ ALLOW two marks for either of the following with H^{+}above the arrow $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4}^{+} \end{aligned}$ ALLOW answers for alkaline hydrolysis followed by acidification $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{NH}_{3} \tag{1} \end{equation*}$ Then $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \tag{1} \end{equation*}$ If propanamide, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ is given initially then ALLOW the two equation marks for the hydrolysis $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+$ $\mathrm{NH}_{4}{ }^{+}$ If no acid is used then only one mark $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3}$	Hydroxynitriles	3

Question	Acceptable Answers	Reject	Mark
19(b)	Reagent - Propanoyl chloride/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ Any two from: $\mathrm{C}-\mathrm{Cl}$ bond is weaker (than $\mathrm{C}-0$) $\mathrm{Cl}^{-} /$chloride (ion) is a better leaving group Carbonyl carbon is more positive/more $\delta+$ /more attractive to nucleophiles OR Reagent - Propanoic anhydride/ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$ $\mathrm{CH}_{3} \mathrm{COO}^{-}$/propanoate (ion) is a better leaving group Carbonyl carbon is more positive/more $\delta+/$ more attractive to nucleophiles IGNORE references to eversible/equilibrium/ catalysts IGNORE bond polarity	Propyl chloride Just Cl is more electronegative	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (\mathbf { i })}$	Radio waves/radio frequency	Just radio	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
19(c)(ii)	Any two from: Protons/nuclei/they have a property called spin/ have a magnetic moment/ have a magnetic field/ are aligned with the external magnetic field which flips/changes align against the external magnetic field (when radiation is absorbed)	starts to spin just dipole moment polarity flips any reference to electrons or molecules scores zero	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i i i) ~}$	Quartet ALLOW quadruplet/indication of four (peaks)	(1)	
Value from 0.1 to 1.9 (ppm) inclusive ACCEPT any range within the above range\quad (1)	$\mathbf{2}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a)}$	(Greater yield) as fewer moles/molecules (of gas) on RHS OR 3 moles/molecules on left but only 1 on right (1) ALLOW arguments in terms of K ${ }_{p}$ remaining constant Disadvantage: Extra cost of (building) equipment (to withstand higher pressure)/ thicker pipes/compressor/maintaining equipment (1) OR Higher cost of energy needed for compression (1) IGNORE references to explosion	Just (higher) cost	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (\mathbf { i })}$	(Reaction is exothermic) so the value of $\Delta S_{\text {surroundings }}$ becomes more positive/larger (at $100{ }^{\circ} \mathrm{C}$) (1)		$\mathbf{2}$
	Therefore $\Delta S_{\text {total }}$ becomes more positive/larger/less negative(at $\left.100{ }^{\circ} \mathrm{C}\right)$ Second mark consequential on first		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i)}$	(Higher temperature gives a) faster rate of reaction /more particles have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$ (ALLOW more successful collisions (per second) IGNORE references to yield	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c)}$	Remove methanol/the product (as it is formed) (1)		$\mathbf{2}$
	Recycle/reuse unreacted reactants (1) IGNORE references to catalyst and increasing amounts of reactants		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (\mathbf { i })}$	$k=\left(1.54 \times 10^{-6}\right) \div(0.1 \times 0.15)$ $\left(=1.0267 \times 10^{-4}\right)$ $=1.03 \times 10^{-4} \mathbf{(1)}$ must be to 3 SF $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathbf{(1)}$ Unit mark is stand alone and units can be in any order Correct answer with units but no working (3) marks	1.02×10^{-4}	$\mathbf{3}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i)}$	If correct unrounded answer to (a) (i) stored in calculator then $4.1067 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ OR If 1.0267×10^{-4} used then $4.1068 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ OR If 1.03×10^{-4} used then $4.12 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ IGNORE sf except 1 sf IGNORE units even if incorrect TE from (a)(i)	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (\mathbf { i })}$	$2\left(^{\text {nd }}\right) /$ second/two/(1 + 1) $=2$ (order)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	Structure ALLOW structure without wedged bonds Dotted bonds must be shown and OH and Br must be on opposite sides with a C-C or C-H bond between them Charge Charge mark can be awarded for a near miss with a single error in the structure (e.g. one hydrogen atom missing) ALLOW -ve charge shown as $\delta-$ on both OH and Br Brackets not essential ALLOW -ve charge to be anywhere on the structure IGNORE $\delta+$ on carbon atom	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	3.00×10^{-3}		
	IGNORE sf for $1 / \mathrm{T}$	(1)	-5.60
	-5.58	(1)	
	IGNORE sf except 1sf		

Question Number	Acceptable Answers	Reject	Mark
21(c)(ii)	Appropriate scale Plotted points must cover at least half of the graph paper on each axis. Points plotted correctly and straight line drawn through all points Gradient $=-10230 \pm 500$ Example $E_{a}=10230 \times 8.31(\mathbf{1)}$ allow TE from incorrect gradient $\begin{equation*} \mathrm{E}_{\mathrm{a}}=(+) 85.0 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right) /(+) 85000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ 3 sf E_{a} range from 80.9 to $89.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW TE from incorrect gradient IGNORE SF except 1	K^{-1}	5

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2}$ $\mathbf{(a) (i)}$	$(+) 186.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i i) ~}$	$(266.9+186.2)-310.1$ (1) $=+143\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ -143 scores (1) Correct answer with sign and no working scores (2) marks ALLOW TE from (i)		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	Yes, as reaction produces 2 molecules/moles from one/more molecules/moles (and) all products are gases IGNORE references to volumes More moles/molecules of gas produced scores (2) OR Yes, (as the reaction is endothermic) $\Delta \mathrm{S}_{\text {surroundings }}$ is negative Since the reaction takes place/goes (spontaneously) $\Delta \mathrm{S}_{\text {total }}$ is positive and therefore $\Delta \mathrm{S}_{\text {system }}$ is positive ALLOW TE from (a)(ii) i.e. 'No, as....'		2

Question Number	Acceptable Answers	Reject	Mark
22(a)(iv)	$\begin{align*} \Delta \mathrm{S}_{\text {surr }} & =-\Delta \mathrm{H} / \mathrm{T} \tag{1}\\ & =-71900 / 700 \\ & =-102.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.1027 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ Correct answer and sign with no working scores (2) $-0.103 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { scores }(1)$ Third mark So $\Delta \mathrm{S}_{\text {total }}$ is positive (so reaction is feasible) OR $\begin{equation*} \Delta \mathrm{S}_{\text {total }}=+40.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { (so reaction is feasible) } \tag{1} \end{equation*}$ ALLOW TE from (a)(ii)	1 or 2 sf	3

Question Number	Acceptable Answers	Reject	Mark
22(a)(v)	$\Delta \mathrm{S}_{\text {total }}=0$ OR $\begin{equation*} \Delta \mathrm{S}_{\text {surroundings }}=-143 \tag{1} \end{equation*}$ $\mathrm{T}=\Delta H \div \Delta S_{\text {surroundings }}$ OR $\begin{align*} \mathrm{T} & =(-) 71900 \div(-) 143 \tag{1}\\ & =502.8(\mathrm{~K}) \tag{1} \end{align*}$ IGNORE sf except 1sf Correct answer with no working scores (3) ALLOW 0.5028 (K) for (2) marks ALLOW - 502.8 (K) for (2) marks ALLOW - 0.5028 (K) for (1) mark ALLOW TE from (a)(ii) If the calculation is not based on $\Delta \mathrm{S}_{\text {total }}=0$ then a maximum of (2) marks can be awarded if done correctly		3

Question Number	Acceptable Answers	Reject	Mark
22(b)	The catalyst is in a different state/phase to the (1) reactants IGNORE references to products Any two from It provides an alternative (reaction) route/mechanism/gases adsorbed on catalyst surface (1)	3	
Of lower activation energy/weakens bonds in reactants Greater proportion of molecules have E \geq Ea (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3}$	$(\mathrm{Ka}=)\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$ (a)(i) Penalise missing charges ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in place of $\left[\mathrm{H}^{+}\right]$ IGNORE state symbols and units even if incorrect	$\mathrm{Ka=}$ $\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a) (i i)}$	$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right)$ (1)	pH $=-\log \sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right)$ $=3.4(\mathbf{1)}$ Answer without working scores (2) marks 6.8 scores (1) IGNORE sf except 1answer if units given	

Question Number	Acceptable Answers	Reject	Mark
23(b)	(pH) range (of indicator) 3.8 to 5.4 OR $\begin{equation*} \mathrm{p} K_{\mathrm{in}}=4.7 \tag{1} \end{equation*}$ Bubble bath is (initially yellow since) pH less than 3.8 / is 3.4 Adding of water/dilution (of acid) causes pH to rise/ means $\left[\mathrm{H}^{+}\right]$decreases Hence pH rises to ≥ 5.4 so blue/changes colour If a(ii) $\mathrm{pH}>3.8$ and <5.4 then loses second marking point but can score other marking points. If a(ii) $\mathrm{pH}>5.4$ then can score first and third marking points only	Water neutralizes acid	4

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at

Llywodraeth Cynulliad Cymru www.edexcel.com/ask or on + 441204770696

Rewarding Learning

